
RnaSec: Genetic Algorithm

Jon-Michael Deldin
Department of Computer Science

University of Montana
jon-michael.deldin@umontana.edu

2011-05-31

Contents
1 Introduction 1

2 Data 1

3 Programmatic Component 2
3.1 Genetic Algorithm . 2

4 Analysis 2
4.1 Impact of Population Size . 3
4.2 Impact of Mutation Rate . 5

5 Conclusion 5

1 Introduction
The goal of this project was to write a genetic algorithm that permutes a single
secondary structure until the original structure is achieved. This was more of a
proof of concept, but the techniques employed may be useful in later stages.

2 Data
The MBE1A aptamer from M. Ellenbecker, J.M. Lanchy, and J.S. Lodmell was
the primary sequence used to generate a “connected-table” (CT) file from mfold.
The CT file was then used to generate a tree data structure.

1

3 Programmatic Component
This project required significant additions to the existing RnaSec library. The
following items were implemented:

• CT parser for input

• support for bulges

• support for internal loops

• pruning

• grafting

• genetic algorithm

3.1 Genetic Algorithm
The genetic algorithm developed is not a true genetic algorithm because it does
not use a bit vector representation or crossover. Instead, tree objects are ma-
nipulated through prune and graft operations. The only genetic operators are
mutation and survival, and all of the diversity is obtained through mutating
clones.

The algorithm is presented below.

1. Create initial random population

2. Loop:

(a) Perform random point mutations on a percentage of the population.
This increases the population size.

(b) Get the fitness of the population. This is determined by taking the
nucleotide positions of the source tree and comparing them with an-
other tree. For every position that is different, a 1 is subtracted to the
fitness score. A score of 0 indicates the other tree is identical to the
source.

(c) Select the most fit until the population has been reduced.
(d) See how many are equal to the original.
(e) Terminate if terminating condition has been met, i.e., x% of the pop-

ulation is equal to the source.

4 Analysis
The genetic algorithm was able to scramble the tree data structure for MBE1A
and return to the original input. I experimented with varying the population
size and percent of the population to verify the mutation operator had the great-
est effect.

2

Generations Required for Solutions

Generations

F
re

qu
en

cy

6.0 6.5 7.0 7.5 8.0 8.5 9.0

0
50

10
0

15
0

20
0

Figure 1: Frequency of generations.

4.1 Impact of Population Size
To determine the effect of varying the population size, sizes from 100–10,000
incremented by 50 were tested (199 test runs) with a mutation rate of 50% and
terminating condition of 100% (i.e., every member of the population had to be
identical to the original tree).

As Figure 1 shows, population size had little effect on the number of gener-
ations required for termination. On average, it took seven generations to termi-
nate as shown in Figure 2. Thus, population size does not have any effect in the
presence of a greedy selection algorithm.

3

●●●●●

●

●

●●

●●

●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 2000 4000 6000 8000 10000

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

9.
0

Generations Required for Solutions

Population Size

G
en

er
at

io
ns

Figure 2: Effect of population size on number of generations required for solu-
tions.

4

4.2 Impact of Mutation Rate
To determine the effect of varying the mutation rate on the number of gen-
erations required to terminate, mutation rates of 0.01–1.0 were tested. In this
algorithm, “mutation rate” refers to the percentage of the population that has
point mutations performed on it, so a value of 0.1 means 10% of the population
will be mutated.

As Figure 3 shows, a higher mutation rate requires fewer generations to ter-
minate. This is logical due to the greedy selection algorithm that selects the
members with the top fitness.

5 Conclusion
In conclusion, the genetic algorithm was able to successfully permute MBE1A
and return to the original tree data structure using prune and graft operations.
This algorithm was primarily a proof of concept for Machine Learning (SP2011),
but it was also a good integration test of the CT parser and tree operations.
Overall, this was a major stepping stone towards tree-edit distance.

5

●

●

●

●

●●
●

●●●
●

●
●
●●

●●●●
●
●●

●●●●●●
●●●●

●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

30
0

Effect of Mutation Pool

Percent of Population Mutated

G
en

er
at

io
ns

Figure 3: Effect of varying mutation rate on the number of generations required
for solutions.

6

