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1 Introduction

Hyperelastic materials are materials that can experi-
ence large elastic strain from small forces and retain
their original properties after the applied forces are
removed [3]. Materials are hyperelastic if a scalar
function exists to relate a material’s strain energy-
density to its deformation gradient [4]. These are
nonlinear models because the deformation is not di-
rectly proportional to the stress applied. Due to the
non-linearity, it is difficult to understand the impact
of various input parameters without “seeing” them
applied. This paper addresses this by developing
and describing an interactive website.

2 Methods

In modeling hyperelasticity for a domain Ω ⊂ Rd,
where d is the spatial dimension, the goal is to find
a displacement field u : Ω → Rd that minimizes
the total potential energy Π. We can represent this
problem as

min
u∈V

Π,

where V is a function space that satisfies boundary
conditions on u. Total potential energy is defined as

Π =
∫

Ω
ψ(u)dx−

∫
Ω

B · udx−
∫

∂Ω
T · uds,

where ψ is the elastic stored energy density function,
B is the body force per unit reference volume (like
gravity), and T is the traction force per unit reference
area[2] (e.g., pushing/pulling force).

The elastic stored energy density function ψ re-
quires a number of parameters to be defined:

deformation gradient F = I +∇u

right Cauchy-Green tensor C = FT F

scalars J = det(F), Ic = trace(C)

Young’s modulus E is the stiffness of a material

Poisson ratio This is a measure of the Poisson ef-
fect, which describes how a material tends to
expand in the directions perpendicular to the
direction of compression (e.g., pressing a fin-
ger into a balloon).

Lamé parameters µ = E
2(1+ν)

, λ = Eν
(1+ν)(1−2ν)

These parameters lead to the function definition
[2]

ψ =
µ

2
(Ic − 3)− µ ln(J) +

λ

2
ln(J)2.

The directional derivative of the total energy
with respect to change in u is given by the follow-
ing variational equation[2]:

L(u; v) = DvΠ =
dΠ(u + εv)

dε

∣∣∣∣∣
ε=0

.

This is equal to zero for all v ∈ V. To solve this equa-
tion with Newton’s method, we need to define the
Jacobian of L as

a(u; du; v) = DduL =
dL(u + εdu; v)

dε

∣∣∣∣∣
ε=0

.

Fortunately, the model is easily expressed in
terms of finite elements and can be easily translated
to a finite elements solver, such as FEniCS [1] for this
project.

2.1 Interface

With the model in hand, we can wrap a user-interface
around FEniCS. The completed website is shown in
Fig. 1–2. This interface features three plots: the pri-
mary is a tricontour plot of the solution, and the
lower plots show the shape of the material before
and after deforming it. The outline plot shows each
coordinate in the mesh before and after deformation,
and the shape plot shows just the corner points to
generate a crude shape. Below the plots are controls
for the hyperelasticity problem, and each input is
documented to minimize a user’s memory load. The
most recent plot is saved each time the user deforms
the material, so he or she can compare the effects of
each parameter.

The interface is implemented as a Python server-
side script that runs on a web server. Specifically, it
uses Flask, a small web library and server, to handle
requests and plotting. This is a long-running script
that loads FEniCS, so it is able to render plots with-
out an additional delay. Plots are generated as PNG
files in Matplotlib and included in the HTML as IMG
elements.

When the user submits a set of parameters, they
are sent as a POST request to the script, which then
hands them off to FEniCS/DOLFIN. Next, the pre-
vious figure is renamed, and a new figure is saved.
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Figure 1: Screenshot of the interactive website.

Finally, the user is redirected back to the main page
where he or she can examine the results and change
other parameters.

2.2 Verification

This simulation is user-defined, so the method of
verification is visually inspecting the resulting de-
formed outline or the solution plot. The model was
adapted from [2], and it is assumed to be correct.

3 Analysis

To assess the effect of each parameter, all parameters
are set to 0, except for E = 10, ν = 0.3, and the unit
square is 4× 4. This results in a deformed material
identical to the original, shown in Fig. 3.

3.1 Body Force

The body force is simply a force that acts through-
out the volume of a body. With the boundaries set
to zero, the body force can only impact points in-
between. This parameter has a direct effect on the
positions of each mesh point, which is expected (Fig.
4). Positive values represent compression due to a
force from the top of the material.

Figure 2: Screenshot of the website’s hyperelasticity
controls.

Figure 3: Baseline plot showing no deformation.
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Figure 4: Body force of x = 1.5, y = 2.0.

3.2 Traction Force

Traction force is the pushing/pulling force exerted
on an object, and the interface enables us to explore
that. This force has a much greater effect on the solu-
tion and coordinates than the body force, shown in
Fig. 5. This is reasonable due to the traction force be-
ing multiplied by the derivative of the area instead
of just x.

3.3 Dirichlet Boundaries

Dirichlet boundaries describe the values a solution
must be at a given boundary. The website permits
assigning values to the x and y boundaries of both
the left and right subdomains. Figures 6–9 are plots
of adjusting individual x or y values. It seems as
though the boundary conditions are carried through
the solution, which may indicate FEniCS does not
reset the boundaries at each integration.

3.4 Young’s Modulus

Young’s modulus, E, is a measure of the stiffness of
an elastic material. In this simulation, it does not
have an effect on the material’s shape on its own
or combined with other parameters (confirmed vi-
sually and by comparing MD5 hashes of each plot im-

Figure 5: Traction force of x = 1.5, y = 2.0.

Figure 6: Dirichlet boundary of left-x set to 0.1.
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Figure 7: Dirichlet boundary of left-y set to 0.1.

Figure 8: Dirichlet boundary of right-x set to 0.1.

Figure 9: Dirichlet boundary of right-y set to 0.1.

age. This may be due to this parameter’s reduced
importance in a 2D problem.

3.5 Poisson Ratio

The Poisson ratio, ν, is observed in Fig. 10. This
version is with a ratio of 0.45, which is similar to clay,
which is why the coordinates are quite shifted.

4 Interpretation

Overall, this project was successful in exploring hy-
perelasticity. The interface enables variables to be
explored individually or in combination, and it al-
lows the user to investigate hypotheses. It has the
potential to be a useful tool in understanding hyper-
elasticity and FEniCS, and hopefully, it can be placed
online on a public-facing server1.

Future experiments might explore shading the
deformed outlines to provide an accurate represen-
tation, instead of shading just the corners. Another
area worth investigating is adding mouse interac-
tion, so a user could click-and-drag to change a

1I intend to load this onto Amazon’s EC2 cloud computing
server, which will allow FEniCS, Flask, and Matplotlib to be in-
stalled.
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Figure 10: Poisson ratio of 0.45.

boundary. The difficulty will be in creating a re-
sponsive interface, and the primary bottleneck is the
compilation of boundary conditions in DOLFIN. On
a related note, the website could be faster with intel-
ligent caching of model parameters to avoid regener-
ating DOLFIN parameters. Finally, if the model code
is fast enough, Ajax could be used to update the in-
terface immediately after a parameter is changed, so
the user would have immediate feedback.
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